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Structure selection for global vector field reconstruction by using the identification of fixed points
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Global vector field reconstruction is a well established technique to provide phenomenological models from
nonlinear data, in particular when all information is contained in a so-called standard function. In the case
when the standard function is taken as a ratio of polynomials, we establish that information about the fixed
points of the system can be automatically retrieved from the data, allowing one to build a better model by
selecting an appropriate structure. The method is exemplified in the case of the variththe Rssler
system, which constitutes a rather acid test cE82063-651X99)06008-0

PACS numbd(s): 05.45-a

I. INTRODUCTION Il. STRUCTURE INFORMATION FROM DATA

Althouah the oriinal phase space of a nonlinear dvnami Let us consider a nonlinear dynamical system defined by
ugh Iginal phase space : y 4 set of autonomous ordinary differential equations:

cal system is not necessarily accessible from measurements

(in particular, when a single variable is recorglguioneering

x=f(X; ), 1
papers[1-3] established that a reconstructed phase space x=fxim) @

may be built and, also, the idea that it is possible to retrievgn which x(t) € R" is a vector valued function depending on

a set of equations from deterministic data has been introg parametet called the time and, the so-called vector field,

duced. These landmark papers led to the development @§ an n-component smooth function generating a flasy.

so-called global vector field reconstructions in which, start-ﬂe R™ is the parameter vector witln components.

ing from a scalar recorded time series for continuous time The system(1), called the original system, may be un-

systems, phenomenological models can be obtained undgnown. For convenience, we present the method wit.

the form of a set of differential equations. Such reconstructollowing a standard unfavorable hypothesis, only one vari-

tions have actually been successfully obtained, and validatedple is assumed to be known. Let this observable be called

both from numerical and, later on, from experimental sys-The aim is hereafter to reconstruct a vector field equivalent

tems[4-13]. to the original one under the form of a so-called standard
In this paper, we consider the case where global vectosystem built on the observable and on its successive deriva-

field reconstructions rely on derivative coordinates, i.e., thdives according to

phase space is spanned by the observable and its derivatives,

up to a certain order. All the information relevant to the X=x=Y,

nonlinear dynamics is then contained in a so-called standard

function. Originally, the standard function was taken as a Y=2,

rational function([6], and references thergjrbut this choice

exhibited a lack of robustness, so that it has been given up to Z=F(X,Y,2), 2)

the profit of polynomial expansion$—13).

Our aim here is to demonstrate that a time series allow# which the reconstructed state space of the standard system
one to determine the fixed points underlying the data, whichs spanned by derivative coordinates,¥,Z) = (x,x,X) and
is the main result of this paper. This information provides ther_ js the so-called standard function to be evaluated.
opportunity for model structure selecti¢ph4] and, as a by- A satisfactory global vector field reconstruction is

product, allows one to use again rational functions in a mor . . L= . i
robust way, extending the range of models usable for globa -ch|eved i a good enough approximatiég to Fs is de

vector field reconstructions. These ideas will be applied t¢igned. In this paper, we assume a model structure~for
the case of the variableof the Rssler system which, as we under the form of a ratio of polynomials reading as
shall see, provides a very acid test case.

The paper is organized as follows. Section Il demon- %‘f QPP
strates, in the case of a rational function moghethich actu- ~ Q(X,Y,2z) =1 P
ally generalizes the use of polynomial expansjohew in- Fs= D(X.Y.2Z) =g , (©)
formation about the fixed points of the dynamical system can T 2 D.PP
be retrieved from a time series. In Sec. Ill, we apply this new p=1 P

technique to the case of the varialzlef the Rasler system
and explain why it constitutes an acid test case. Section IV isvhereNg and Ny designate the number of monomid®¥
a conclusion. involved in the numerator polynomi&(X,Y,Z) and in the
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denominator polynomiaD(X,Y,Z), respectively. Also, the No
notation PP designates monomials reading as 21 QpPE
o=
ivi =0
PP=XYiZK (4) "o ’
p§=‘,l D,P?
with a biunivocal relationship between natural numbprs
and triplets {,j,k) defined in Ref[7], and later generalized No
to the case oh-uplets[12]. > QuPP
Fixed points are among the most important invariants to p=1 -0 (®)
be correctly reproduced by any modeling technifji4]. In "o '
the particular case of the standard system of &y.all co- 21 DPPip
ordinates of the fixed points are equal to zero except the first -
one, designated bX,, which must be a zero of the standard No
function when the other coordinates are set to zero. There- > QuPR. 1
fore, if {Sp}glil designates the set of fixed points, we have PN=1 ! -0
L ——
Fe(Xp,0,0)=0, pzl DpPR, -1
S V=0 ©) in which PP(i=1, ... Ny—1) are monomials evaluated by
Z=0. using the vectorsX,Y,Z);,i=1,... Nt—1. Since the de-

_ _ nominators are generically not zero, the set of equati8hs
It is then required that the reconstructed standard systefmhakes sense and can be simplified to
possess the same fixed points as the exact standard system.

Consequently, the reconstructed standard function must have No 0
the same zeros as the exact standard function, when all the 2’1 QpP1=0,
variablesY andZ are set to zero. From E(B), we then must P
have Ng
.p:
" . - 2, Q:PP=0, ©)
QX.Y.2)=[I X=X I (X=X)+Q(X,Y,2), |
p=1 u=1 Q
p =
(6) 2 QpPNT,l 0.

! The system(9) is a system of Kt—1) equations forNg

D(X.Y,2)= D(X)uﬂl (X=X,)+D(XY,2). (M unknown coefficient®,. When the number of equations is
equal to the number of unknowns, it can be solved by an
— ) o inversion techniqgue. We may also generate an overdeter-
There, Q(X,Y,Z) is a contribution to the numerator mined system and solve it in the least-square sense. In par-
Q(X,Y,Z), which does not contain its constant term nor anyjcyar, beside theN;—1) vectors involved in the systems
monomial depending only on the variabie By Egs.(5), it (8) or (9), we use arNth vector for whichZ=X is not zero,
must be zero whelf andZ are zero. SimilarlyD(X,Y,Z) is  generating an extra equation:
a contribution to the denominat@r(X,Y,Z), which does not

contain its constant term nor any monomial depending only No

on the variableX. D(X) is a polynomial depending only on Z QPR

the variableX. X, are again the values of the variab¥e pN_l—:Z (10)
associated to the fixed points. The quantifigsalso cancel 2 5

the numerator whelY andZ are zero, but they are not asso- & DpPNT

ciated with any fixed point. Instead, they simplify with simi-
lar terms in the denominator wheYi and Z are zero.N, From Eq.(3), this equation may be rewritten as
designates the number ¥f, values.

To generate a well determined approximation problem for No

the structure exhibited in Eq&) and(7), it is first necessary pzl QPPNT
to evaluate the quantitieX, and X, from the data. This =7, 11
demand relies on the evaluation of the numerator as follows. D(X,Y,Z)n

In the reconstructed phase spacgY,Z), the standard

function may be estimated by usi@g[Eq. (2)], which is the _ R . _ _
third-order derivative of the observableLet us then choose renormalized coefficient®,, associated witlQ, according
(N+—1) vectors of the reconstructed phase space for whictP
the standard functiod=Xx is zero. These data generate the
following system of equations:

which may be appended to the systén We then introduce

Qp=Qp/D(X,Y,Z)y.. (12)
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We can solve the syste(8) supplemented by Eq11) in the If a good enough reconstruction is achieved, the vakjes
least-square sense to determine the unknown coefficientsan be identified among the double set of val¥gsand X,
ép' by numerically solving
Afterward, we consider Eq6) which, forY=2=0, leads Ng
to >, D(X®P)=0, (20
Ns Ny p=1
Q(X’O'O):pll (X_Xp)uﬂl (X=Xy). 13 in which i(p) has the same meaning as in the similar Eq.

(16). The valuesK, which are coordinates of the fixed points
From Egs.(3), (11), and(12), and recalling that~35=2, we Of the system are then S|mulltaneously obtglned. _
obtain Therefore, our method yields the locations of the fixed
points of a global model with a specific structuwehen the
No standard function is a ratio of polynomiglsising the data to
Q(X,Y,Z2)= D(X,Y,Z)NTE QpPR,(X,Y,Z), (14  determine its coefficients. In utmost rigor, the fixed points so
p=1 obtained are also the fixed points of the system underlying
the data only if the structure of the approximated standard
function is the same as the structure of the exacgeneral
No unknown) standard function. Also, strictly speaking, Efj7)
Q(X,0,0)=D(X,0,O)NTZ QPPR,T(X,O,O), (15 s fulfilled only approximately, since the model might be, in
Pt general, inaccurate and singeis a third derivative. How-
in which PP(X,0,0) is the monomiaPP taken fory=z=0.  ever, under the assumptions that the model is the correct one
By using the bijective relationship between natural number&nd ignoring the noise, our algorithm allows one to deter-

p and triplets {,j k), see Eq(4), these monomials are actu- mine the fixed points of the system from the numerator poly-
ally monomialsX'(® depending only on the variablé in ~ nomial directly from the data and constitutes the main result

which i depends omp such as #0 andj=k=0. Therefore, ©f this paper. We shall comment later on situations where the
from Egs.(13) and (15), the values ofX, andX, are evalu- aforementioned assumptions are not exactly satisfied.
ated by solving

which may be specified to

lll. APPLICATION TO THE RO SSLER SYSTEM

No
> ép(xi(p))=0- (16) A. Generalities
Pt In this section, we consider the well known original

The solutions of Eq(16) can be obtained, for instance, by Rossler system reading as
using Laguerre’s methofd5]. Let us also remark that solv-

ing Eq. (16) provides us with botfX,, values associated to X=-y—-2
fixed points andX,, values, which are not associated to fixed .
points. y=x+ay, (22)
Next, we have from Eq(3)
No N z=b+z(x—c),
p; Qppp‘ngl D,yPP=0, 17 with a phase space spanned by original coordinateg, £)

and in which @,b,c) are the control parameters. It is then
while from Eq.(6) easily demonstrated that, yfis the observable, the standard
function takes a polynomial form and can then be easily
S o S o approximated by a polynomial expansipfi], furthermore
pgl QpP :pl;[l (X_Xp)uﬂl (X_Xu)“Lle QpPs ensuring a diffeomorphism between the original phase space
(18)  (x,y,2) and the reconstructed phase spagey(y) [16].
Conversely, observablesandz provide transformations be-
in which P? are monomial$*” where the powers of andZ  tween original and reconstructed phase spaces which are
are not simultaneously equal to zero; i.e., by E4), this  only aimost everywhere diffeomorphic, i.e., they form a dif-
meansj #0 or/andk+0. feomorphism but for a set of Lebesgue measure zero. As can
Therefore, onceX, and X, are determined as explained be readily checked, the existence of these sets is associated
above, the approximation problem subsequently consists iwith the fact that the corresponding standard functions have
the determination of the coefficieny, andQ, accordingto  a structure of rational functiong[17], and references
the following equation: therein. When the variable is used, the standard function
NG possesses a first-order singularity and the corresponding ra-
noo- tional function can be well approximated by a polynomial
nzl QnPc_szl DpPP= _le (X_xp)ul;[l (X=Xu), structure[7], a fact which may be understood by invoking
(190  the Weierstrass convergence theorgil]. When the vari-
ablezis used, the standard function now possesses a second-
in which indicesn are such ag+0 or/andk+0. order singularity and the corresponding standard function

Ns Ny

Np Ns Ny
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FIG. 1. X, and X, values plotted versuliy.

can no longer be well approximated by a polynomial expanexhibiting the aforementioned second-order singularity
sion, leading to a failure in global vector field reconstructionwhich, in practice, cannot be easily handled by a polynomial
with such an expansiof]. Therefore, there is an ordering approximation. This standard function can alternatively be
y>Xx>z, meaning thay is the best observable whiigls the  given the form of a rational function reading as

worst observable. This also means that our ability to observe

the state of a system may depend on the recorded variable. F,=(2X?+abXY—2bXZ+2bY?—cX3—X?Y+aX?Z

This fact has been exemplified in Refd6,19,2Q and re-

ceives a quantitative Conf?rmation in R¢L7] which intro- —aX Y2+ 3XY Z-2Y3+aX! - XY) /X2, (24)
duces an observability index. According to this observability
index, we obtain an ordering>x>z which is the same as
the one relying on the order of singularities in the standar
function. In Ref.[7], it has been stated that the variaklef f the dat d using it for struct lecti
the Rasler system constituted an acid test case for globalrom € data and using It as a means for structure selection.
vector field reconstructions. The above observations provide

To the best of our knowledge, the only valuable global  The chaotic data series that we use is generated from the
model obtained from the variabieof the Rassler system has  numerical integration of Eq21) with the control parameters
been built by using a 4D phase sp4t], while 3D models (3 b,c)=(0.398,2.0,4.0) and with a time stépequal to
have only been successful by using observaklesdy. The  0.001. Since the pseudoperiod is equal to about 6.2, the data
present work takes into account the fact that, if the standarderies has 6200 points per pseudoperiod. Successive deriva-
function is a ratio of polynomials as initially used by Goues-tjyes up to the third order are estimated from the data. To this
bet ([6], and references thereirits singularities come from pyrpose, a sixth degree interpolating polynomial is built,
the denominator and thus can be distinguished from the fixegentered at each point where the derivatives are evaluated, by
points of the system, which are zeros of the numerator. Th@sing the six nearest neighbors. Derivatives are then obtained
determination of fixed points, as explained in Sec. I, thenOy deriving these polynomials. The window sizés taken to
will allow one to successfully provide a global vector field pg equal to 7 in terms df.
reconstruction with rational functions, in a 3D-phase space, The first step of the reconstruction process consists in the

for the variablez of the Rasler system. _ determination of theX, and X, values. This is achieved by
For the exact standard system derived fromzhariable  sing N, between 5 and 40 with, equal toNy, i.e., we

of the Resler system, two fixed poin§, andS_ are ob-  yse (N;—1) vectors for building Eqs(8), plus one vector
tained given by

This structure has previously been used in R6éf.and
Jeferences therein, but without any success. It will be suc-
cessful in this paper by extracting fixed-point information

for Eq. (11). For each value oNy, the coefficientsf)p are

c+(c?—4ab)*? computed by solving Eq8) supplemented with Eq11) in
S B the least-square sense aigdandX, values are determinated
S, (22) by solving Eq.(16) with Laguerre’s methodl15].
- | Y=0, For a given value oNg, the number 0¥, andX, values
Z=0. is equal to the highest power in the variaenvolved in

B Eq. (16), i.e., to the greatest value ofn the triplets (,j,k)
Again with the variablez of the Rasler system taken as the that are related to natural numbepsaccording to the bi-
observable, the exact standard function, denbtgdreads as  univocal relationship defined in Ref7] with 1<p=< Ng.
(ab+32)Y—aY?—bZ The minimal value forNt is chosen to bg 5, because_, be-
neath 5, the system would only have linear terms in the
X numerator and then could not be rich enough to model the
2bY2— 23 considered nonlinear process. The obtained values are plot-
= = (23) ted versusNt in Fig. 1. If a value is complex with an imagi-
X2 nary part not negligible with respect to its real part, only its

F,=b—cX-Y+azZ+aX?— XY+



1604 L. Le SCELLER, C. LETELLIER, AND G. GOUESBET PRE 60

TABLE I. Coefficients of the standard functiobr; andQj are
the values of the coefficients of the exact standard fundtignD,,
andQ, are, respectively, the estimated valuegfandQy ; in the
last column are the triplets corresponding to the ingerf the

coefficients.
p Dg Dp (i,j,k)
1 0.0 0.3294449560109810 * (0,0,0
2 0.0 —0.887385716978 1010 %  (1,0,0
3 0.0 —0.982851441497 1010 %  (0,1,0
4 0.0 0.523536 279 044 9810 (0,0,
5 1.0 1.000 000 000 000 00 (2,0,0
Qp Qp
1 0.0 0.368 668 847 34810 ° (0,0,0
2 0.0 0.737 309 247 675 02105 (1,0,0
3 0.0 —0.170987 0318303610 %  (0,1,0
4 0.0 —0.100216 1425293810 (0,0,
5 2.0 2.000427991 773627 (2,0,0
6 ab=0.796 0.796 04322401291 (1,1,0
7 —2b=-2.0 —1.999671242686 3 (1,0,
8 2b=4.0 3.999896 3711856 (0,2,0
9 0.0 —0.5970913227528810° % (0,1,)
10 0.0 —0.109413866921 1410 %  (0,0,2
11 —-c=-4.0 —4.0007001614400 (3,0,0
12 -1.0 —0.999876 401 14307 (2,1,0
13 a=0.398 0.397551480 15417 (2,0,
14 —a=-0.398 —0.397 415 044 978 10 (1,2,0
15 3.0 2.999 7703298379 1,1,
16 0.0 —0.199 002 43243688104  (1,0,2
b) 17 -2.0 —1.999787 8343484 (0,3,0
18 0.0 0.342 676 016 903 9310 * (0,2,)
FIG. 2. (a) Trajectory obtained from the numerical integration 19 0.0 0.577 930 207 944 6610 ° 0,1,2
of the exact standard system calculated from zhariable of the 20 0.0 —0.657719101694 4410 ¢  (0,0,3
Rossler system for the control parameters a,lc) 21 a=0.398 0.397 796 806 766 65 (4,0,0
=(0.398,2.0,4.0)(b) Trajectory obtained from the numerical inte- 22 —-1.0 —1.000089 6739203 (3,1,0

gration of the reconstructed model.

modulus is plotted. If the imaginary part is negligible, the . o
b ginary p g'g Using these values, a good approximation to the standard

real part is plotted. ¢ > . v found ith the drivi
For Ny between 5 and 10, the value labeled 1 is essennction s easily found ~with the driving vector

tially constant while the second one decreases b9,  (Na:N:Ns,No,Np,7)=(100,0.001,4,22,5,7) in whick()
where both of them become complex. Rdf between 11  Ng is the number of vectorsX;,Y;,Z;,Z;)(i €[1Ng]) on

and 20, three values are obtained. The two first values aré€ netii) hiis the time step between each of thefffi) N
sometimes oscillating but the third one remains constant anig the number of quadrupletsX{,Y;,Z;,Z;) sampled per
can be estimated to be equal to 0t5202. ForN; between  pseudoperiodiv) Ng andNp are the number of coefficients
21 and 35, four values are obtained. Rgr between 22 and of the numerator and of the denominator, respectively, and
35, the third one is remarkably stable and is equal tav) 7 is the window size on which the derivatives are esti-
0.527 706-0.000 002. In the same interval, the first two val- mated. Indeed, the integration of the reconstructed model
ues remain real and are constant around @002, with  provides an attractor which may be shown to be topologi-
sometimes a very small imaginary part not larger than 0.002cally equivalent to the original Rssler attractor obtained
For Nt between 22 and 32, the fourth one remains veryfrom the numerical integration of Eq$2) with Fs=F, as
stable at 9.5& 0.15. AfterN;=35 and until 40, the number given in Eq.(24) (see Fig. 2 From the denominator coeffi-

of values is 5. FoN; between 35 and 40, the first three cientsD; and solving Eq(20), the X, values may be com-
values are the same as before but the fourth one becomesited and identified among th¢, and X, values as ex-
slightly oscillating around 9.0. The fifth one is clearly un- plained in Sec. Il. They appear to identify with the two
stable. It then seems reasonable to only retain the Xqur values labeled 1 and 2 in Fig. 1, now deno¥d andXy,,
andX, values that remain very stable fl; between 22 and and are equal to 0:00.002. We may then identify afterward
32 (in fact, we retain the average of these values on thighe coordinates of the two fixed poins,; and X, of the
interval). model, which are equal to 0.527 786.000 002 and 9.50
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and is found to be less than 0.02%, which is indeed a satis-
factory result.

C. Complementary discussion

We finally introduce some comments promised at the end
of Sec. Il. First of all, when the model takes the form of a
polynomial expansion, it can nevertheless produce satisfac-
tory models even when the exact standard function does not
possess a polynomial form, including when the data are of an
experimental naturf8,9,11,2]. This fact mathematically re-
lies on the Weierstrass convergence theofé&sj. There is
(a) without any noise (b) noisy data no similar theorem for rational functions but, by enlarging
the class of models available for global vector field recon-
FIG. 3. A small perturbation may crucially change the structureStructions, it is likely that experimental data can sometimes
of the flow in the neighborhood of a fixed point. When the data aréd€ successfully reconstructed by using rational functions
noisy, the fixed points may become difficult to identify as exempli- rather than by using polynomials. Nevertheless, numerical
fied in the sketcltb). In such a case, a small perturbation may moveinstabilities are only avoided in the case where the right
the fixed point location. structure is selected, i.e., when fixed points are determined.
One significant issue concerns the robustness of the present
N ) method agginst nc.Jise' perturbat'i(.)ns. Even 'if thg computation
+0.15, respectively. These values compare very favorablys g ccessive derivatives amplifies the noise, it has already
with the exact numerical values of and X, which are,  pean ohserved that a satisfactory model may be obtained
r_espectlvely, equal to 0.527708 4 and 9.522. The approximgg.om noisy experimental data when the fourth time deriva-
tion to F then reads as tive is involved in the reconstruction of a 4D modg&l]. In
the present work, however, problems associated with noise
still arise for the fixed-point extraction.

Fe=[(X= Xp2) (X Xp2) (X= X1 (X=Xu2) + QsY + QuZ In particular, as sketched in Fig. 3, a small perturbation in

+ QXY+ Q7XZ+ QgY2+ QgY Z+ Q1022+ Q1 X2Y the neighborhood of one fixed point may be sufficient to
) ) 5 . locally change the flow structure preventing us from cor-
+Q13XZ+ QXY+ QXY Z+ Q16X Z°+ Q7Y rectly identifying the fixed-point location. A remedy to this
2 > 3 3 problem is still to be found to extend the range of applica-
+Q18Y“Z+ Q19Y Z°+ Q20Z° + QX Y]/ (D1 + DX bility of the present new method for fixed-point identification
+D3Y+D,Z+DgX?), (25)  and structure selection.

where the values of the coefficier@y, andD, are reported

in Table I.. - o IV. CONCLUSION
Next, since, in the present case, we know the original

standard system, we may compare our model to its exact gy ysing rational functions, it is shown that the class of

analytically derived form. _ dynamical systems for which a reconstructed model may be
From theX,, andX, values and from the evaluation of the gptained is extended to a wider class. To this purpose, the
coefficientsQ, with indexn such ag #0 ork+#0, and of the  strycture of the standard function involved in the recon-
coefficients Dp,, it is possible to evaluate alQy’'s, P structed model is selected by distinguishing the fixed-point
€[1Ng], and allDy’s, pe[1Np] for the approximation to  coordinates from other zeros of the function. In this way, a
the standard function. These coefficients are reported igyccessful 3D model is obtained starting from theariable
Table | together with the exact values deno@flandDy.  of the Rssler system, which was remaining an acid test case
The relative errore between the exact coefficients and theonly already solved with a 4D differential embedding. A

estimated coefficients is defined according to structure selection for the reconstructed standard function
has therefore allowed one to improve the quality of the

Ng Np model by reducing its complexity. Morgover, an appropriate

E |Q'—Q'e|+2 D, D¢ structu're for a rayonal standarq functlo_n prevents us from

e T e A numerical difficulties during the integration process. Never-

€= Ng NG (26)  theless, the fixed-point extraction process is sensitive to
E Q8|+ E D] noise perturbatlons,. an issue to be solved to allow one to use

i=1 i=1 our method for realistic experimental data.
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