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Structure selection for global vector field reconstruction by using the identification of fixed points

L. Le Sceller, C. Letellier, and G. Gouesbet
CORIA UMR CNRS 6614–LESP, Universite´ et INSA de Rouen, Place Emile Blondel, Boıˆte Postale 08,

76131 Mont-Saint-Aignan Cedex, France
~Received 3 November 1998; revised manuscript received 31 March 1999!

Global vector field reconstruction is a well established technique to provide phenomenological models from
nonlinear data, in particular when all information is contained in a so-called standard function. In the case
when the standard function is taken as a ratio of polynomials, we establish that information about the fixed
points of the system can be automatically retrieved from the data, allowing one to build a better model by
selecting an appropriate structure. The method is exemplified in the case of the variablez of the Rössler
system, which constitutes a rather acid test case.@S1063-651X~99!06008-0#
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I. INTRODUCTION

Although the original phase space of a nonlinear dyna
cal system is not necessarily accessible from measurem
~in particular, when a single variable is recorded!, pioneering
papers@1–3# established that a reconstructed phase sp
may be built and, also, the idea that it is possible to retri
a set of equations from deterministic data has been in
duced. These landmark papers led to the developmen
so-called global vector field reconstructions in which, sta
ing from a scalar recorded time series for continuous ti
systems, phenomenological models can be obtained u
the form of a set of differential equations. Such reconstr
tions have actually been successfully obtained, and valida
both from numerical and, later on, from experimental s
tems@4–13#.

In this paper, we consider the case where global ve
field reconstructions rely on derivative coordinates, i.e.,
phase space is spanned by the observable and its deriva
up to a certain order. All the information relevant to th
nonlinear dynamics is then contained in a so-called stand
function. Originally, the standard function was taken as
rational function~@6#, and references therein!, but this choice
exhibited a lack of robustness, so that it has been given u
the profit of polynomial expansions@6–13#.

Our aim here is to demonstrate that a time series allo
one to determine the fixed points underlying the data, wh
is the main result of this paper. This information provides
opportunity for model structure selection@14# and, as a by-
product, allows one to use again rational functions in a m
robust way, extending the range of models usable for glo
vector field reconstructions. These ideas will be applied
the case of the variablez of the Rössler system which, as w
shall see, provides a very acid test case.

The paper is organized as follows. Section II demo
strates, in the case of a rational function model~which actu-
ally generalizes the use of polynomial expansions!, how in-
formation about the fixed points of the dynamical system
be retrieved from a time series. In Sec. III, we apply this n
technique to the case of the variablez of the Rössler system
and explain why it constitutes an acid test case. Section I
a conclusion.
PRE 601063-651X/99/60~2!/1600~7!/$15.00
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II. STRUCTURE INFORMATION FROM DATA

Let us consider a nonlinear dynamical system defined
a set of autonomous ordinary differential equations:

ẋ5 f ~x;m!, ~1!

in which x(t)PRn is a vector valued function depending o
a parametert called the time andf, the so-called vector field
is an n-component smooth function generating a flowf t .
mPRm is the parameter vector withm components.

The system~1!, called the original system, may be un
known. For convenience, we present the method withn53.
Following a standard unfavorable hypothesis, only one v
able is assumed to be known. Let this observable be callex.
The aim is hereafter to reconstruct a vector field equival
to the original one under the form of a so-called stand
system built on the observable and on its successive de
tives according to

Ẋ5 ẋ5Y,

Ẏ5Z,

Ż5Fs~X,Y,Z!, ~2!

in which the reconstructed state space of the standard sy
is spanned by derivative coordinates (X,Y,Z)5(x,ẋ,ẍ) and
Fs is the so-called standard function to be evaluated.

A satisfactory global vector field reconstruction

achieved if a good enough approximationF̃s to Fs is de-

signed. In this paper, we assume a model structure forF̃s
under the form of a ratio of polynomials reading as

F̃s5
Q~X,Y,Z!

D~X,Y,Z!
5

(
p51

NQ

QpPp

(
p51

ND

DpPp

, ~3!

whereNQ and ND designate the number of monomialsPp

involved in the numerator polynomialQ(X,Y,Z) and in the
1600 © 1999 The American Physical Society
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PRE 60 1601STRUCTURE SELECTION FOR GLOBAL VECTOR . . .
denominator polynomialD(X,Y,Z), respectively. Also, the
notationPp designates monomials reading as

Pp5XiYjZk ~4!

with a biunivocal relationship between natural numbersp
and triplets (i , j ,k) defined in Ref.@7#, and later generalized
to the case ofn-uplets@12#.

Fixed points are among the most important invariants
be correctly reproduced by any modeling technique@14#. In
the particular case of the standard system of Eq.~2!, all co-
ordinates of the fixed points are equal to zero except the
one, designated byXp , which must be a zero of the standa
function when the other coordinates are set to zero. Th
fore, if $Sp%p51

NS designates the set of fixed points, we hav

SpH Fs~Xp ,0,0!50,

Y50,

Z50.

~5!

It is then required that the reconstructed standard sys
possess the same fixed points as the exact standard sy
Consequently, the reconstructed standard function must h
the same zeros as the exact standard function, when al
variablesY andZ are set to zero. From Eq.~3!, we then must
have

Q~X,Y,Z!5 )
p51

NS

~X2Xp!)
u51

Nu

~X2Xu!1Q̄~X,Y,Z!,

~6!

D~X,Y,Z!5D~X!)
u51

Nu

~X2Xu!1D̄~X,Y,Z!. ~7!

There, Q̄(X,Y,Z) is a contribution to the numerato
Q(X,Y,Z), which does not contain its constant term nor a
monomial depending only on the variableX. By Eqs.~5!, it

must be zero whenY andZ are zero. Similarly,D̄(X,Y,Z) is
a contribution to the denominatorD(X,Y,Z), which does not
contain its constant term nor any monomial depending o
on the variableX. D(X) is a polynomial depending only o
the variableX. Xp are again the values of the variableX
associated to the fixed points. The quantitiesXu also cancel
the numerator whenY andZ are zero, but they are not ass
ciated with any fixed point. Instead, they simplify with sim
lar terms in the denominator whenY and Z are zero.Nu
designates the number ofXu values.

To generate a well determined approximation problem
the structure exhibited in Eqs.~6! and~7!, it is first necessary
to evaluate the quantitiesXp and Xu from the data. This
demand relies on the evaluation of the numerator as follo

In the reconstructed phase space (X,Y,Z), the standard
function may be estimated by usingŻ @Eq. ~2!#, which is the
third-order derivative of the observablex. Let us then choose
(NT21) vectors of the reconstructed phase space for wh
the standard functionŻ5 x̂ is zero. These data generate t
following system of equations:
o

st

e-

m
em.
ve
he

y

ly

r

s.

h

(
p51

NQ

QpP1
p

(
p51

ND

DpP1
p

50,

(
p51

NQ

QpPi
p

(
p51

ND

DpPi
p

50, ~8!

(
p51

NQ

QpPNT21
p

(
p51

ND

DpPNT21
p

50,

in which Pi
p( i 51, . . . ,NT21) are monomials evaluated b

using the vectors (X,Y,Z) i ,i 51, . . . ,NT21. Since the de-
nominators are generically not zero, the set of equations~8!
makes sense and can be simplified to

(
p51

NQ

QpP1
p50,

(
p51

NQ

QpPi
p50, ~9!

(
p51

NQ

QpPNT21
p 50.

The system~9! is a system of (NT21) equations forNQ
unknown coefficientsQp . When the number of equations
equal to the number of unknowns, it can be solved by
inversion technique. We may also generate an overde
mined system and solve it in the least-square sense. In
ticular, beside the (NT21) vectors involved in the system
~8! or ~9!, we use anNTth vector for whichŻ5 x̂ is not zero,
generating an extra equation:

(
p51

NQ

QpPNT

p

(
p51

ND

DpPNT

p

5Ż. ~10!

From Eq.~3!, this equation may be rewritten as

(
p51

NQ

QpPNT

p

D~X,Y,Z!NT

5Ż, ~11!

which may be appended to the system~8!. We then introduce

renormalized coefficientsQ̃p , associated withQp according
to

Q̃p5Qp /D~X,Y,Z!NT
. ~12!
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1602 PRE 60L. Le SCELLER, C. LETELLIER, AND G. GOUESBET
We can solve the system~8! supplemented by Eq.~11! in the
least-square sense to determine the unknown coeffici

Q̃p .
Afterward, we consider Eq.~6! which, forY5Z50, leads

to

Q~X,0,0!5 )
p51

NS

~X2Xp!)
u51

Nu

~X2Xu!. ~13!

From Eqs.~3!, ~11!, and ~12!, and recalling thatF̃s5Ż, we
obtain

Q~X,Y,Z!5D~X,Y,Z!NT(p51

NQ

Q̃pPNT

p ~X,Y,Z!, ~14!

which may be specified to

Q~X,0,0!5D~X,0,0!NT(p51

NQ

Q̃pPNT

p ~X,0,0!, ~15!

in which Pp(X,0,0) is the monomialPp taken forY5Z50.
By using the bijective relationship between natural numb
p and triplets (i , j ,k), see Eq.~4!, these monomials are actu
ally monomialsXi (p) depending only on the variableX in
which i depends onp such asiÞ0 and j 5k50. Therefore,
from Eqs.~13! and ~15!, the values ofXp andXu are evalu-
ated by solving

(
p51

NQ

Q̃p~Xi (p)!50. ~16!

The solutions of Eq.~16! can be obtained, for instance, b
using Laguerre’s method@15#. Let us also remark that solv
ing Eq. ~16! provides us with bothXp values associated t
fixed points andXu values, which are not associated to fix
points.

Next, we have from Eq.~3!

(
p51

NQ

QpPp2Ż(
p51

ND

DpPp50, ~17!

while from Eq.~6!

(
p51

NQ

QpPp5 )
p51

NS

~X2Xp!)
u51

Nu

~X2Xu!1 (
p51

NQ

QpPc
p ,

~18!

in which Pc
p are monomialsPp where the powers ofY andZ

are not simultaneously equal to zero; i.e., by Eq.~4!, this
meansj Þ0 or/andkÞ0.

Therefore, onceXp and Xu are determined as explaine
above, the approximation problem subsequently consist
the determination of the coefficientsDp andQp according to
the following equation:

(
n51

NQ

QnPc
n2Ż(

p51

ND

DpPp52 )
p51

NS

~X2Xp!)
u51

Nu

~X2Xu!,

~19!

in which indicesn are such asj Þ0 or/andkÞ0.
ts

s

in

If a good enough reconstruction is achieved, the valuesXu
can be identified among the double set of valuesXp andXu
by numerically solving

(
p51

NQ

Dp~Xi (p)!50, ~20!

in which i (p) has the same meaning as in the similar E
~16!. The valuesXp which are coordinates of the fixed poin
of the system are then simultaneously obtained.

Therefore, our method yields the locations of the fix
points of a global model with a specific structure~when the
standard function is a ratio of polynomials!, using the data to
determine its coefficients. In utmost rigor, the fixed points
obtained are also the fixed points of the system underly
the data only if the structure of the approximated stand
function is the same as the structure of the exact~in general
unknown! standard function. Also, strictly speaking, Eq.~17!
is fulfilled only approximately, since the model might be,
general, inaccurate and sinceŻ is a third derivative. How-
ever, under the assumptions that the model is the correct
and ignoring the noise, our algorithm allows one to det
mine the fixed points of the system from the numerator po
nomial directly from the data and constitutes the main res
of this paper. We shall comment later on situations where
aforementioned assumptions are not exactly satisfied.

III. APPLICATION TO THE RO ¨ SSLER SYSTEM

A. Generalities

In this section, we consider the well known origin
Rössler system reading as

ẋ52y2z,

ẏ5x1ay, ~21!

ż5b1z~x2c!,

with a phase space spanned by original coordinates (x,y,z)
and in which (a,b,c) are the control parameters. It is the
easily demonstrated that, ify is the observable, the standa
function takes a polynomial form and can then be eas
approximated by a polynomial expansion@7#, furthermore
ensuring a diffeomorphism between the original phase sp
(x,y,z) and the reconstructed phase space (y,ẏ,ÿ) @16#.
Conversely, observablesx andz provide transformations be
tween original and reconstructed phase spaces which
only almost everywhere diffeomorphic, i.e., they form a d
feomorphism but for a set of Lebesgue measure zero. As
be readily checked, the existence of these sets is assoc
with the fact that the corresponding standard functions h
a structure of rational functions~@17#, and references
therein!. When the variablex is used, the standard functio
possesses a first-order singularity and the corresponding
tional function can be well approximated by a polynom
structure@7#, a fact which may be understood by invokin
the Weierstrass convergence theorem@18#. When the vari-
ablez is used, the standard function now possesses a sec
order singularity and the corresponding standard funct
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FIG. 1. Xp andXu values plotted versusNT .
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can no longer be well approximated by a polynomial exp
sion, leading to a failure in global vector field reconstructi
with such an expansion@7#. Therefore, there is an orderin
y.x.z, meaning thaty is the best observable whilez is the
worst observable. This also means that our ability to obse
the state of a system may depend on the recorded varia
This fact has been exemplified in Refs.@16,19,20# and re-
ceives a quantitative confirmation in Ref.@17# which intro-
duces an observability index. According to this observabi
index, we obtain an orderingy.x.z which is the same as
the one relying on the order of singularities in the stand
function. In Ref.@7#, it has been stated that the variablez of
the Rössler system constituted an acid test case for glo
vector field reconstructions. The above observations prov
a sound basis to explain why it is so.

To the best of our knowledge, the only valuable glob
model obtained from the variablez of the Rössler system has
been built by using a 4D phase space@17#, while 3D models
have only been successful by using observablesx andy. The
present work takes into account the fact that, if the stand
function is a ratio of polynomials as initially used by Goue
bet ~@6#, and references therein!, its singularities come from
the denominator and thus can be distinguished from the fi
points of the system, which are zeros of the numerator.
determination of fixed points, as explained in Sec. II, th
will allow one to successfully provide a global vector fie
reconstruction with rational functions, in a 3D-phase spa
for the variablez of the Rössler system.

For the exact standard system derived from thez variable
of the Rössler system, two fixed pointsS1 and S2 are ob-
tained given by

S6H X65
c6~c224ab!1/2

2
,

Y50,

Z50.

~22!

Again with the variablez of the Rössler system taken as th
observable, the exact standard function, denotedFz , reads as

Fz5b2cX2Y1aZ1aX22XY1
~ab13Z!Y2aY22bZ

X

1
2bY222Y3

X2
~23!
-

e
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e,

exhibiting the aforementioned second-order singula
which, in practice, cannot be easily handled by a polynom
approximation. This standard function can alternatively
given the form of a rational function reading as

Fz5~2X21abXY22bXZ12bY22cX32X2Y1aX2Z

2aXY213XYZ22Y31aX42X3Y!/X2. ~24!

This structure has previously been used in Ref.@6# and
references therein, but without any success. It will be s
cessful in this paper by extracting fixed-point informatio
from the data and using it as a means for structure selec

B. Extracting fixed points and the model

The chaotic data series that we use is generated from
numerical integration of Eq.~21! with the control parameters
(a,b,c)5(0.398,2.0,4.0) and with a time steph equal to
0.001. Since the pseudoperiod is equal to about 6.2, the
series has 6200 points per pseudoperiod. Successive de
tives up to the third order are estimated from the data. To
purpose, a sixth degree interpolating polynomial is bu
centered at each point where the derivatives are evaluate
using the six nearest neighbors. Derivatives are then obta
by deriving these polynomials. The window sizet is taken to
be equal to 7 in terms ofh.

The first step of the reconstruction process consists in
determination of theXu andXp values. This is achieved by
using NT between 5 and 40 withNQ equal toNT , i.e., we
use (NT21) vectors for building Eqs.~8!, plus one vector

for Eq. ~11!. For each value ofNT , the coefficientsQ̃p are
computed by solving Eq.~8! supplemented with Eq.~11! in
the least-square sense andXu andXp values are determinate
by solving Eq.~16! with Laguerre’s method@15#.

For a given value ofNQ , the number ofXu andXp values
is equal to the highest power in the variableX involved in
Eq. ~16!, i.e., to the greatest value ofi in the triplets (i , j ,k)
that are related to natural numbersp according to the bi-
univocal relationship defined in Ref.@7# with 1<p<NQ .
The minimal value forNT is chosen to be 5, because, b
neath 5, the system would only have linear terms in
numerator and then could not be rich enough to model
considered nonlinear process. The obtained values are
ted versusNT in Fig. 1. If a value is complex with an imagi
nary part not negligible with respect to its real part, only
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modulus is plotted. If the imaginary part is negligible, t
real part is plotted.

For NT between 5 and 10, the value labeled 1 is ess
tially constant while the second one decreases untilNT59,
where both of them become complex. ForNT between 11
and 20, three values are obtained. The two first values
sometimes oscillating but the third one remains constant
can be estimated to be equal to 0.5260.02. ForNT between
21 and 35, four values are obtained. ForNT between 22 and
35, the third one is remarkably stable and is equal
0.527 70660.000 002. In the same interval, the first two va
ues remain real and are constant around 0.60.002, with
sometimes a very small imaginary part not larger than 0.0
For NT between 22 and 32, the fourth one remains v
stable at 9.5060.15. AfterNT535 and until 40, the numbe
of values is 5. ForNT between 35 and 40, the first thre
values are the same as before but the fourth one beco
slightly oscillating around 9.0. The fifth one is clearly u
stable. It then seems reasonable to only retain the fourXp
andXu values that remain very stable forNT between 22 and
32 ~in fact, we retain the average of these values on
interval!.

FIG. 2. ~a! Trajectory obtained from the numerical integratio
of the exact standard system calculated from thez variable of the
Rössler system for the control parameters (a,b,c)
5(0.398,2.0,4.0).~b! Trajectory obtained from the numerical inte
gration of the reconstructed model.
n-

re
d

o

2.
y

es

is

Using these values, a good approximation to the stand
function is easily found with the driving vecto
(Nq ,h,Ns ,NQ ,ND ,t)5(100,0.001,4,22,5,7) in which~i!
Nq is the number of vectors (Xi ,Yi ,Zi ,Żi)( i P@1,Nq#) on
the net,~ii ! h is the time step between each of them,~iii ! Ns

is the number of quadruplets (Xi ,Yi ,Zi ,Żi) sampled per
pseudoperiod,~iv! NQ andND are the number of coefficient
of the numerator and of the denominator, respectively,
~v! t is the window size on which the derivatives are es
mated. Indeed, the integration of the reconstructed mo
provides an attractor which may be shown to be topolo
cally equivalent to the original Ro¨ssler attractor obtained
from the numerical integration of Eqs.~2! with Fs5Fz as
given in Eq.~24! ~see Fig. 2!. From the denominator coeffi
cientsDi and solving Eq.~20!, the Xu values may be com-
puted and identified among theXp and Xu values as ex-
plained in Sec. II. They appear to identify with the tw
values labeled 1 and 2 in Fig. 1, now denotedXu1 andXu2,
and are equal to 0.060.002. We may then identify afterwar
the coordinates of the two fixed pointsXp1 and Xp2 of the
model, which are equal to 0.527 70660.000 002 and 9.50

TABLE I. Coefficients of the standard function:Dp
e andQp

e are
the values of the coefficients of the exact standard functionFs ; Dp

andQp are, respectively, the estimated values ofDp
e andQp

e ; in the
last column are the triplets corresponding to the indexp of the
coefficients.

p Dp
e Dp ( i , j ,k)

1 0.0 0.3294449560109831024 ~0,0,0!
2 0.0 20.887 385 716 978 1031024 ~1,0,0!
3 0.0 20.982 851 441 497 1031024 ~0,1,0!
4 0.0 0.523 536 279 044 9831025 ~0,0,1!
5 1.0 1.000 000 000 000 00 ~2,0,0!

Qp
e Qp

1 0.0 0.368 668 847 34831025 ~0,0,0!
2 0.0 0.737 309 247 675 0231025 ~1,0,0!
3 0.0 20.170 987 031 830 3631024 ~0,1,0!
4 0.0 20.100 216 142 529 3331023 ~0,0,1!
5 2.0 2.000 427 991 773 627 ~2,0,0!
6 ab50.796 0.796 043 224 012 91 ~1,1,0!
7 22b522.0 21.999 671 242 686 3 ~1,0,1!
8 2b54.0 3.999 896 371 185 6 ~0,2,0!
9 0.0 20.597 091 322 752 8831024 ~0,1,1!

10 0.0 20.109 413 866 921 1131023 ~0,0,2!
11 2c524.0 24.000 700 161 440 0 ~3,0,0!
12 21.0 20.999 876 401 143 07 ~2,1,0!
13 a50.398 0.397 551 480 154 17 ~2,0,1!
14 2a520.398 20.397 415 044 978 10 ~1,2,0!
15 3.0 2.999 770 329 837 9 ~1,1,1!
16 0.0 20.199 002 432 436 8331024 ~1,0,2!
17 22.0 21.999 787 834 348 4 ~0,3,0!
18 0.0 0.342 676 016 903 9331024 ~0,2,1!
19 0.0 0.577 930 207 944 0631025 ~0,1,2!
20 0.0 20.657 719 101 694 4131026 ~0,0,3!
21 a50.398 0.397 796 806 766 65 ~4,0,0!
22 21.0 21.000 089 673 920 3 ~3,1,0!
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60.15, respectively. These values compare very favora
with the exact numerical values ofX2 andX1 , which are,
respectively, equal to 0.527 708 4 and 9.522. The approxi
tion to Fs then reads as

F̃s5@~X2Xp1!~X2Xp2!~X2Xu1!~X2Xu2!1Q3Y1Q4Z

1Q6XY1Q7XZ1Q8Y21Q9YZ1Q10Z
21Q12X

2Y

1Q13X
2Z1Q14XY21Q15XYZ1Q16XZ21Q17Y

3

1Q18Y
2Z1Q19YZ21Q20Z

31Q22X
3Y#/~D11D2X

1D3Y1D4Z1D5X2!, ~25!

where the values of the coefficientsQn andDn are reported
in Table I.

Next, since, in the present case, we know the origi
standard system, we may compare our model to its e
analytically derived form.

From theXp andXu values and from the evaluation of th
coefficientsQn with indexn such asj Þ0 or kÞ0, and of the
coefficients Dp , it is possible to evaluate allQp’s, p
P@1,NQ#, and allDp’s, pP@1,ND# for the approximation to
the standard function. These coefficients are reported
Table I together with the exact values denotedQp

e andDp
e .

The relative errore between the exact coefficients and t
estimated coefficients is defined according to

e5

(
i 51

NQ

uQi2Qi
eu1(

i 51

ND

uDi2Di
eu

(
i 51

NQ

uQi
eu1(

i 51

ND

uDi
eu

~26!

FIG. 3. A small perturbation may crucially change the struct
of the flow in the neighborhood of a fixed point. When the data
noisy, the fixed points may become difficult to identify as exemp
fied in the sketch~b!. In such a case, a small perturbation may mo
the fixed point location.
ly

a-

l
ct

in

and is found to be less than 0.02%, which is indeed a sa
factory result.

C. Complementary discussion

We finally introduce some comments promised at the e
of Sec. II. First of all, when the model takes the form of
polynomial expansion, it can nevertheless produce satis
tory models even when the exact standard function does
possess a polynomial form, including when the data are o
experimental nature@8,9,11,21#. This fact mathematically re-
lies on the Weierstrass convergence theorem@18#. There is
no similar theorem for rational functions but, by enlargin
the class of models available for global vector field reco
structions, it is likely that experimental data can sometim
be successfully reconstructed by using rational functio
rather than by using polynomials. Nevertheless, numer
instabilities are only avoided in the case where the ri
structure is selected, i.e., when fixed points are determin
One significant issue concerns the robustness of the pre
method against noise perturbations. Even if the computa
of successive derivatives amplifies the noise, it has alre
been observed that a satisfactory model may be obta
from noisy experimental data when the fourth time deriv
tive is involved in the reconstruction of a 4D model@21#. In
the present work, however, problems associated with n
still arise for the fixed-point extraction.

In particular, as sketched in Fig. 3, a small perturbation
the neighborhood of one fixed point may be sufficient
locally change the flow structure preventing us from c
rectly identifying the fixed-point location. A remedy to th
problem is still to be found to extend the range of applic
bility of the present new method for fixed-point identificatio
and structure selection.

IV. CONCLUSION

By using rational functions, it is shown that the class
dynamical systems for which a reconstructed model may
obtained is extended to a wider class. To this purpose,
structure of the standard function involved in the reco
structed model is selected by distinguishing the fixed-po
coordinates from other zeros of the function. In this way
successful 3D model is obtained starting from thez variable
of the Rössler system, which was remaining an acid test c
only already solved with a 4D differential embedding.
structure selection for the reconstructed standard func
has therefore allowed one to improve the quality of t
model by reducing its complexity. Moreover, an appropria
structure for a rational standard function prevents us fr
numerical difficulties during the integration process. Nev
theless, the fixed-point extraction process is sensitive
noise perturbations, an issue to be solved to allow one to
our method for realistic experimental data.
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